Metal Powders for Additive Manufacturing

A member of ALTANA
ECKART, as member of the ALTANA group, is one of the leading global players with decades of experience in the field of atomization of pure, spherical aluminium powder. Thanks to our high production capacity, we can guarantee reliable supplies.

With the acquisition of TLS, we extended our portfolio with a variety of different metal alloy powders – titanium, aluminium and copper based – as well as the option to provide customized solutions. We are your partner of choice for DIN EN 9100:2018 certified production.
A20X: The worldwide strongest aluminium alloy

A20X powder for Additive Manufacturing has been developed for high strength applications, with high temperature capacity. This material, made from MMPDS-approved A205 aluminum alloy, meets demanding aerospace requirements and opens up new possibilities for applications where the properties of AlSi10Mg and other aluminium alloys are insufficient.

Composition

The composition conforms to alloy specification AMS 4471, with the weight percentages shown in the table below, as determined by wet chemical methods in accordance with ASTM E 34, and by spectrochemical methods in accordance with ASTM E 1251.

<table>
<thead>
<tr>
<th>Al</th>
<th>Cu</th>
<th>Mg</th>
<th>Ag</th>
<th>Si</th>
<th>Fe</th>
<th>Others, each</th>
<th>Others max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bal.</td>
<td>4.20 – 5.00</td>
<td>0.20 – 0.33</td>
<td>0.60 – 0.90</td>
<td>3.00 – 3.85</td>
<td>1.25 – 1.55</td>
<td>0.10 max.</td>
<td>0.08 max.</td>
</tr>
</tbody>
</table>

Properties

Density

Bulk density of the alloy : 2.85 g/cm³

Density achieved in Laser Powder Bed Fusion >98.9% without additional HIP operation.

Tensile Properties (room temperature)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Tensile Strength</th>
<th>Yield Stress</th>
<th>Elongation</th>
</tr>
</thead>
<tbody>
<tr>
<td>20°C</td>
<td>511 MPa</td>
<td>445 MPa</td>
<td>11%</td>
</tr>
<tr>
<td>100°C</td>
<td>423 MPa</td>
<td>375 MPa</td>
<td>10%</td>
</tr>
<tr>
<td>150°C</td>
<td>389 MPa</td>
<td>345 MPa</td>
<td>20%</td>
</tr>
<tr>
<td>200°C</td>
<td>331 MPa</td>
<td>311 MPa</td>
<td>15%</td>
</tr>
<tr>
<td>250°C</td>
<td>224 MPa</td>
<td>215 MPa</td>
<td>12%</td>
</tr>
</tbody>
</table>

As built

Stress Relieved

Heat Treatment

Aerospace approved as AMS 7033

- High temperature performance up to 190 °C
- Fatigue properties significantly exceed other Al alloys
- 20-63 micron spherical powder
- Useable on all LPBF AM Machines
- In full aerospace production.

(1) Stress Relieved on the build plate at 300°C for 2 hours, air cooled.
(2) ECKART Proprietary heat treatment; involving solution treatment, quench and then precipitation hardening, to T7 condition.

(1) Stress Relieved on the build plate at 300°C for 2 hours, air cooled.
(2) ECKART Proprietary heat treatment; involving solution treatment, quench and then precipitation hardening, to T7 condition.

As built Stress Relieved

Ultimate Tensile Strength (MPa)

357 – 394

312

450 – 511

Yield Strength (MPa)

350 – 385

310

390 – 440

Elongation (%)

12 – 15

20

10 – 13

Young’s Modulus (GPa)

74

77

79

Density achieved in Laser Powder Bed Fusion >99.9% without additional HIP operation.
Almost all industries hold copper and copper alloys in high regard for their high electrical and thermal conductivity. The application range includes LPBF, EBM, Laser Cladding and Cold Spray. In additive manufacturing, Copper Powders are used to produce heat exchanger components, components for electrical technology and inductions coils, for example. ECKART TLS offers a wide AMspheres product range from standard, like low oxygen Cu and CuCr1Zr to special customized alloys.

All grades of AMspheres Copper Powder are produced by inert gas atomization, resulting in high quality and spherical powders that are free of contamination.

AMspheres Metal Powders

AMspheres Copper Powder

Chemical Composition

AMspheres Copper Powder from stock.

<table>
<thead>
<tr>
<th>AMspheres Copper Powder Chemical Composition (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMspheres</td>
</tr>
<tr>
<td>OFHC-Cu</td>
</tr>
<tr>
<td>Cu 99.7</td>
</tr>
<tr>
<td>CuCr1Zr</td>
</tr>
</tbody>
</table>

CuCr1Zr according to CW166G.
Raw material chemical composition of OFHC-Cu according to CW007A.

Particle Size Distribution and Powder Properties

Particle size distribution and physical powder properties of copper powder sizes are listed below. Copper powder sizes according to customer specifications are also available on request.

<table>
<thead>
<tr>
<th>Particle Size Distribution (µm)</th>
<th>AMspheres</th>
<th>Cu</th>
<th>Cr</th>
<th>Zr</th>
<th>Fe</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(10)</td>
<td>D(50)</td>
<td>D(90)</td>
<td>Flow Rate</td>
<td>Apparent Density</td>
<td>Circularity</td>
<td></td>
</tr>
<tr>
<td>15 – 53µm</td>
<td>10 – 20</td>
<td>26 – 36</td>
<td>42 – 54</td>
<td>–</td>
<td>–</td>
<td>≥0.94</td>
</tr>
<tr>
<td>20 – 63µm*</td>
<td>20 – 30</td>
<td>36 – 46</td>
<td>57 – 65</td>
<td>≤16g/150g</td>
<td>≥4.70g/cm³</td>
<td>≥0.94</td>
</tr>
<tr>
<td>45 – 100µm</td>
<td>45 – 56</td>
<td>63 – 78</td>
<td>80 – 110</td>
<td>≤15g/150g</td>
<td>≥4.80g/cm³</td>
<td>≥0.94</td>
</tr>
</tbody>
</table>

Particle size distribution according to ASTM B822. Flow rate and apparent density according to ASTM B213 and ASTM B212. Circularity according to ISO 13322-4. Mean values measured via dynamic image analysis (ISO 13322-3).

*20-63µm only available for CuCr1Zr.
AMSpheres Metal Powders

AMSpheres Titanium Powder

ECKART TLS has been producing high quality metal powders for over 25 years, developing its processes for a constant improvement in quality. AMSpheres Titanium Powder can be used in a wide range of applications, especially in additive manufacturing with powder bed fusing using laser (LPBF) or electron beam (EB-PBF) and also in Metal Injection Molding (MIM).

All grades of AMSpheres Titanium Powder are produced by inert gas atomization, resulting in high quality and spherical powders that are free of contamination.

AMSpheres Titanium Powder from stock is available as Grade 1, Grade 2, Grade 5 and Grade 23.

Chemical Composition

<table>
<thead>
<tr>
<th>Grade</th>
<th>Ti (<wt%)</th>
<th>Al (<wt%)</th>
<th>V (<wt%)</th>
<th>Fe (<wt%)</th>
<th>C (<wt%)</th>
<th>N (<wt%)</th>
<th>H (<wt%)</th>
<th>O-Limit (<wt%)</th>
<th>O-Typical (<wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td>Bal.</td>
<td>–</td>
<td>–</td>
<td>≤0.30</td>
<td>≤0.08</td>
<td>≤0.03</td>
<td>≤0.015</td>
<td>≤0.18</td>
<td>0.12</td>
</tr>
<tr>
<td>Grade 2</td>
<td>Bal.</td>
<td>–</td>
<td>–</td>
<td>≤0.30</td>
<td>≤0.08</td>
<td>≤0.03</td>
<td>≤0.015</td>
<td>≤0.25</td>
<td>0.15</td>
</tr>
<tr>
<td>Grade 5</td>
<td>Bal.</td>
<td>5.50 – 6.50</td>
<td>3.50 – 4.50</td>
<td>≤0.40</td>
<td>≤0.08</td>
<td>≤0.05</td>
<td>≤0.015</td>
<td>≤0.20</td>
<td>0.11</td>
</tr>
<tr>
<td>Grade 23</td>
<td>Bal.</td>
<td>5.50 – 6.50</td>
<td>3.50 – 4.50</td>
<td>≤0.25</td>
<td>≤0.08</td>
<td>≤0.03</td>
<td>≤0.0125</td>
<td>≤0.13</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Powder chemical composition of Grade 1 and 2 according to ASTM B448, may also comply with ASTM F67 and F1580.
Powder chemical composition of Grade 5 according to ASTM B448, may also comply with ASTM F136, F1580 and F2924.
Powder chemical composition of Grade 23 according to ASTM B448, may also comply with ASTM F136, F1580, F2924 and F3001.
*Oxygen content strongly depends on the grain size.

Particle Size Distribution and Powder Properties

Particle size distribution and physical powder properties of titanium powder sizes are listed below. Titanium powder sizes according to customer specifications are also available on request.

<table>
<thead>
<tr>
<th>Particle Size Distribution (µm)</th>
<th>Flow Rate</th>
<th>Apparent Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>– 32µm</td>
<td>7 – 13</td>
<td>–</td>
</tr>
<tr>
<td>10 – 45µm</td>
<td>8 – 16</td>
<td>23 – 33</td>
</tr>
<tr>
<td>20 – 53µm</td>
<td>20 – 30</td>
<td>35 – 45</td>
</tr>
<tr>
<td>20 – 63µm</td>
<td>25 – 35</td>
<td>40 – 50</td>
</tr>
<tr>
<td>45 – 100µm</td>
<td>45 – 55</td>
<td>85 – 75</td>
</tr>
</tbody>
</table>

Particle size distribution according to ASTM B442. Flow rate and apparent density according to ASTM B213 and ASTM B212.
Traditionally AlSi10Mg is used as a casting alloy. In Additive Manufacturing, powder made from AlSi10Mg is commonly used due to the high corrosion resistance, low density and good mechanical strength of the final components. Typical applications are found in prototyping or small series productions within aerospace and automotive industry. AMspheres Aluminium Powder has a very good batch to batch consistency and is available from small to big size batches.

All grades of AMspheres Aluminium Powder are produced by inert gas atomization, resulting in high quality and spherical powders that are free of contamination.

<table>
<thead>
<tr>
<th>Particle Size Distribution (µm)</th>
<th>Flow Rate</th>
<th>Apparent Density</th>
<th>Circularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(10)</td>
<td>D(50)</td>
<td>D(90)</td>
<td></td>
</tr>
<tr>
<td>15 – 53µm</td>
<td>12 – 19</td>
<td>25 – 39</td>
<td>43 – 56</td>
</tr>
<tr>
<td>15 – 63µm</td>
<td>12 – 19</td>
<td>30 – 40</td>
<td>53 – 63</td>
</tr>
<tr>
<td>20 – 63µm</td>
<td>23 – 30</td>
<td>36 – 46</td>
<td>57 – 65</td>
</tr>
</tbody>
</table>

Particle size distribution according to ASTM B822. Flow rate and apparent density according to ASTM B417 and ASTM B417. Circularity according to ISO 13322-2. Mean values measured via dynamic image analysis (ISO 13322-2).

Particle properties stated for AlSi10Mg.
ECKART TLS offers many different AMspheres alloys. Our set-up consisting of several EIGA and crucible atomizers enables us to atomize alloys in a temperature range of 500 °C - 2500 °C. With the crucible atomizers, we have the option of alloying by ourselves, whereby in the EIGA pre-alloyed bars are used.

Here are a few examples of alloys we have already produced:

Aluminium:
- AlSi9Cu3
- AlSi40
- AlSi50
- AlSn20Cu
- AlSn40Cu
- AlZnMg-alloys

Copper:
- CuSn-alloys
- CuSi-alloys
- CuAl-alloys

Titanium:
- Ti 5-5-5-3
- Ti 6-2-4-2
- Ti 6-2-4-6
- TiNbZr
- Ti6Al7Nb
- TiAl

Zirconium:
- Zr702
- Zr705

Niobium:
- C103
- NbZrTi

Iron:
- FeSi3
- FeAlTi
- FeMnAl
This information and our technical advice – whether verbal, in writing or by way of trials – are given in good faith but without warranty, and this also applies where proprietary rights of third parties are involved. Our advice does not release you from the obligation to verify the information currently provided – especially that contained in our safety data and technical information sheets – and to test our products as to their suitability for the intended processes and uses. The application, use and processing of our products and the products manufactured by you on the basis of our technical advice are beyond our control and, therefore, entirely your own responsibility.

A member of ALTANA