

AMspheres Metal Powders for Additive Manufacturing

Metal Powders for Additive Manufacturing

ECKART, as member of the ALTANA group, is one of the leading global players with decades of experience in the field of atomization of pure, spherical aluminium powder. Thanks to our high production capacity, we can guarantee reliable supplies.

With the acquisition of TLS, we extended our portfolio with a variety of different metal alloy powders - titanium, aluminium and copper based – as well as the option to provide customized solutions. We are your partner of choice for DIN EN 9100:2018 certified production.

Metal Powders for Additive Manufacturing

A20X: The worldwide strongest aluminium alloy

(AMspheres Metal Powders for **Additive Manufacturing**

(AMspheres Special alloys

AMspheres Copper Powder **06**

AMspheres Titanium Powder ... 08

AMspheres Aluminium Powder . . 10

AMspheres Zirconium Powder ... 12

Special alloys 14

02 ECKART ECKART 03

A20X

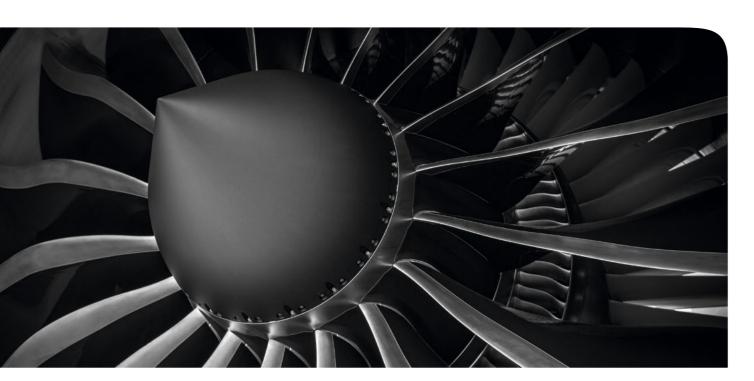
A20X-The worldwide strongest aluminium alloy

A20X powder for Additive Manufacturing has been developed for high strength applications, with high temperature capacity. This material, made from MMPDS-approved A205 aluminium alloy, meets demanding aerospace requirements and opens up new possibilities for applications where the properties of AlSi10Mg • In full aerospace production. and other aluminium alloys are insufficient.

- · Aerospace approved as per AMS 7033
- · High temperature performance up to 190 °C
- · Fatigue properties significantly exceed other Al alloys
- · Useable on all LPBF AM Machines

Composition

The composition conforms to alloy specification AMS 7033, with the chemical methods in accordance with ASTM E 34, and by spectroweight percentages shown in the table below, as determined by wet chemical methods in accordance with ASTM E 1251.


Al	Cu	Mg	Ag	Ti	В	Si	Fe	Others, each	Others max.
Bal.	4.20 – 5.00	0.20 - 0.33	0.60 - 0.90	3.00 – 3.85	1.25 – 1.55	0.10 max.	0.08 max.	0.08 max.	0.17 max.

Properties

Density

Bulk density of the alloy: 2.85 g/cm³

Density achieved in Laser Powder Bed Fusion >99.9% without additional HIP operation.

Tensile Properties (room temperature)

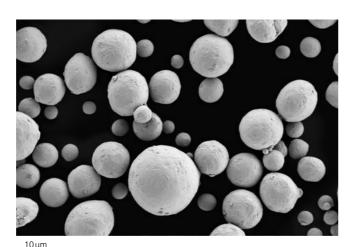
	As built	Stress Relieved ¹	Heat Treatment ²
Ultimate Tensile Strength (MPa)	357 – 394	312	450 – 511
Yield Strength (MPa)	350 – 385	310	390 – 440
Elongation (%)	12 – 15	20	10 – 13
Young's Modulus (GPa)	74	77	79

All mechanical testing at room temperature to ASTM B557. Hardness minimum of 140HV. Test bars machined prior to testing. NONE OF THE TEST BARS HAVE BEEN HIP TREATED. (1) Stress Relieved on the build plate at 300 °C for 2 hours, air cooled.

(2) ECKART Proprietary Heat Treatment, involving solution treatment, quench and then precipitation hardening, to T7 condition

Temperature	Tensile Strength	Yield Strength	Elongation
20°C	511 MPa	445 MPa	11%
100°C	423 MPa	375 MPa	10%
150°C	369 MPa	354 MPa	20%
200°C	331 MPa	311 MPa	15%
250 C	224 MPa	215 MPa	12%

04 ECKART ECKART 05



AMspheres Copper Powder

Almost all industries hold copper and copper alloys in high regard for their high electrical and thermal conductivity. The application range includes LPBF, EBM, Laser Cladding and Cold Spray. In additive manufacturing, Copper Powders are used to produce heat exchanger

All grades of AMspheres Copper Powder are produced by inert gas atomization, resulting in high quality and spherical powders that are free of contamination.

components, components for electronics and induction coils, for example. ECKART TLS offers a variety of AMspheres Cu powders, ranging from Oxygen-Free High-Conductivity Copper and CuCrZr to special customized alloys.

Chemical Composition

AMspheres Copper powders from stock.

	Composition (wt%)								
AMspheres	Cu	0							
OFHC-Cu	≥99.95	≤0.05							
Cu 99.7	≥99.7	≤0.3							

Standard copper alloy powders.

		Composition (wt%)									
AMspheres	Cu	Cr	Zr	Fe	Si	Ni	Sn	Al	Mn	Zn	OE
CuCr1Zr	Bal.	0.50 – 1.20	0.03 - 0.3	≤0.08	≤0.10	_	-		-	-	≤0.2
CuAl10Fe5Ni5	Bal.	≤0.05	-	4.0 – 5.5	≤0.1	4.0 – 6.0	≤0.1	8.5 – 10.5	≤3.0	≤0.50	-
CuSn10	Bal.	-	-	-	-	-	9 – 11		-	-	-

CuCr1Zr according to CW106C. CuAl10Fe5Ni5 according to CC333G.

Particle Size Distribution and Powder Properties

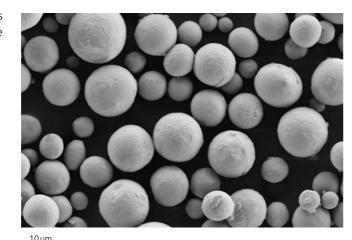
Particle size distribution and physical powder properties of copper powder sizes are listed below. Copper powder sizes according to customer specifications are also available on request.

	Particle Size D	ristribution (µm)	Powder Properties		
	D10	D 50	D 90	Flow Rate	Apparent Density
15 – 53 µm	10 – 20	26 – 36	42 – 54	-	>4.7 g/cm³
20 – 63 µm*	20 – 30	36 – 46	57 – 65	≤16 s/50 g	>4.7 g/cm³
45 – 100 μm	45 – 56	63 – 78	80 – 110	≤15 s/50 g	>4.8 g/cm³

Particle size distribution according to ASTM B822. Flow rate and apparent density according to ASTM B213 and ASTM B212. Apparent Density stated for pure copper powders.

OF ECKART C

 $^{^{\}star}20\text{-}63\,\mu\text{m}$ not available for pure copper powders.



AMspheres Titanium Powder

ECKART TLS has been producing high quality metal powders for over 25 years, developing its processes for a constant improvement in quality. AMspheres Titanium Powder can be used in a wide range of

applications, especially in Additive Manufacturing with Powder Bed Fusing using Laser (LPBF) or Electron Beam (EB-PBF) and also in Metal Injection Molding (MIM).

All grades of AMspheres Titanium Powder are produced by inert gas atomization, resulting in high quality and spherical powders that are free of contamination.

Chemical Composition

AMspheres Titanium powders from stock, available as Grade 1, Grade 2, Grade 5, and Grade 23.

		Composition (wt%)									
AMspheres	Ti	Al	V	Fe	С	N	Н	O-Limit	O-Typical*		
Grade 1	Bal.	_	-	≤0.20	≤0.08	≤0.03	≤0.015	≤0.18	0.12		
Grade 2	Bal.	-	-	≤0.30	≤0.08	≤0.03	≤0.015	≤0.25	0.15		
Grade 5	Bal.	5.5 – 6.75	3.5 – 4.5	≤0.40	≤0.08	≤0.05	≤0.015	≤0.20	0.11		
Grade 23	Bal.	5.5 – 6.5	3.5 – 4.5	≤0.25	≤0.08	≤0.03	≤0.0125	≤0.13	0.08		

Powder chemical composition of Grade 1 and 2 according to ASTM B348, may also comply with ASTM F67 and F1580.

Powder chemical composition of Grade 5 according to ASTM B348, may also comply with ASTM F136, F1580 and F2924.

Powder chemical composition of Grade 23 according to ASTM B348, may also comply with ASTM F136, F1580, F2924 and F3001.

^{*}Oxygen content is strongly dependent on the grain size.

		Composition (wt%)										
AMspheres	Ti	Al	Sn	Zr	Мо	Si	V	Cr	Fe	С	N	Н
Ti6242	Bal.	5.5 – 6.5	1.8 – 2.2	3.6 – 4.4	1.8 – 2.2	0.06 - 0.10	-	-	≤0.10	≤0.05	≤0.05	≤0.0125
Ti6246	Bal.	5.5 – 6.5	1.75 – 2.25	3.5 – 4.5	5.5 – 6.5	-	-	-	≤0.15	≤0.04	≤0.04	≤0.0125
Ti5553	Bal.	4.4 – 5.7	_	<0.3	4.0-5.5	<0.15	4.0-5.5	2.5-3.5	0.3- 0.5	≤0.10	≤0.05	≤0.015

Oxygen content is strongly dependent on the grain size.

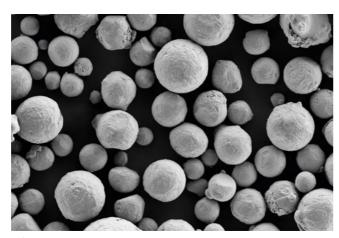
Particle Size Distribution and Powder Properties

Particle size distribution and physical powder properties of titanium powder sizes are listed below. Titanium powder sizes according to customer specifications are also available on request.

	Particle Size D	Powder	Properties		
	D 10	D 50	D90	Flow Rate	Apparent Density
– 25 µm*	7 – 10	13 – 18	25 – 30	-	≥2.0 g/cm³
– 32 μm	7 – 13	17 – 23	29 – 35	-	≥2.0 g/cm³
10 – 45 μm	8 – 16	23 – 33	40 – 50	_	≥2.0 g/cm³
20 – 53 μm	20 – 30	34 – 45	55 – 65	≤40 s/50 g	≥2.2 g/cm³
20 – 63 μm	25 – 35	40 – 50	58 – 70	≤40 s/50 g	≥2.2 g/cm³
20 – 75 μm	20 – 30	45 – 55	68 – 78	≤40 s/50 g	≥2.3 g/cm³
45 – 100 μm	45 – 55	65 – 75	95 – 105	≤40s/50g	≥2.4 g/cm³

Particle size distribution according to ASTM B822. Flow rate and apparent density according to ASTM B213 and ASTM B212.

08 ECKART 09


^{*}Particle size distribution only available for Grade 5 and Grade 23.

AMspheres Aluminium Powder

Traditionally, AlSi10Mg is used as a casting alloy. In Additive Manufacturing, powder made from AlSi10Mg is commonly used due to the high corrosion resistance, low density and moderate mechanical strength of the final components. Typical applications are

All grades of AMspheres Aluminium Powder are produced by inert gas atomization, resulting in high quality and spherical powders that are free of contamination. found in prototyping or serial production within aerospace and automotive industries. AMspheres Aluminium Powder has a very good batch-to-batch consistency and is available from small to big size batches.

10 µm

Chemical Composition

AMspheres Aluminium powders from stock.

		Composition (wt%)											
AMspheres	Al	Si	Mg	Fe	Ti	Zn	Mn	Cu	Ni	Pb	Sn	OE	ОТ
AlSi10Mg	Bal.	9.0 – 11.0	0.20 - 0.45	≤0.55	≤0.15	≤0.10	≤0.45	≤0.05	≤0.05	≤0.05	≤0.05	≤0.05	≤0.15
AlSi7Mg0.6	Bal.	6.5 – 7.5	0.45 - 0.70	≤0.19	≤0.25	≤0.07	≤0.10	≤0.05	-	-	-	≤0.03	≤0.10
Al	>99.7	≤0.06	_	≤0.15	-	-	-	_	_	_	_	_	_

AlSi10Mg according to EN AC-43000. AlSi7Mg0.6 according to EN AC-42200.

Particle Size Distribution and Powder Properties

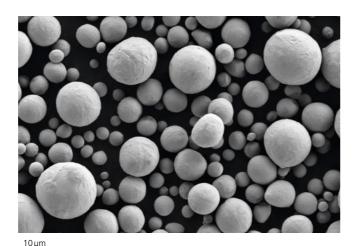
Particle size distribution and physical powder properties of aluminium powder sizes are listed below. Aluminium powder sizes according to customer specifications are also available on request.

	Particle Size	Powder Properties			
	D10	D50	D90	Flow Rate	Apparent Density
15 – 53 μm	12 – 19	30 – 40	53 – 63	_	≥1.3 g/cm³
20 – 63 μm	23 – 30	36 – 46	57 – 65	≤25 s/50 g	≥1.3 g/cm³
20 – 75 μm	22 – 30	44 – 54	70 – 78	≤25 s/50 g	≥1.3 g/cm³
45 – 100 μm	47 – 63	65 – 80	80 – 110	≤25 s/50 g	≥1.3 g/cm³

Flow rate and apparent density according to ASTM B964 and ASTM B417.

Powder properties stated for AlSi10Mg.

10 ECKART 1:



AMspheres Zirconium Powders

Zirconium is a highly corrosion- and heat-resistant metal used in a variety of applications including pyrotechnics, aerospace and defense.

Our Zr702 powder is produced using the EIGA method, ensuring excellent sphericity and high purity. We offer a variety of particle size

distributions according to customer requests. Furthermore, our advanced atomization capabilities extend to Zr-based alloys such as 7r705

Chemical Composition

AMspheres Zirconium powders from stock.

Composition (wt%)											
AMspheres	Zr + Hf	Hf	Fe + Cr	Nb							
Zr702	≥99.2	≤4.5	≤0.2	-							
Zr705	≥95.5	≤4.5	≤0.2	2.0 – 3.0							

Particle Size Distribution

Typical particle size distributions are listed below. Other particle size distributions are available upon request.

Particle Size Distribution (μm)					
	D10	D50	D90		
10 – 45 μm	8 – 16	25 – 35	42 – 55		
45 – 150 μm	43 – 61	75 – 95	110 – 145		

Particle size distribution according to ASTM B822.

12 ECKART 13

AMspheres Special alloys

consisting of several EIGA and crucible atomizers enables us to EIGA, we offer toll atomization of pre-alloyed bars provided by the atomize alloys in a temperature range of 500 °C - 2500 °C. customer.

ECKART TLS offers many different AMspheres alloys. Our set-up With crucible atomizers, we can perform alloying ourselves. Using

Here are a few examples of alloys we have already produced:

Aluminium:							
AlSi9Cu3	AlSi40	AlSi50	6061	7075			
Copper:							
CuSn-alloys	CuSi-alloys	CuNi-Alloys					
Titanium:							
TiNbZr	Ti6Al7Nb	NiTi					
Niobium:							
C103							
Iron:							
FeSi3							
Commercially Pure Powders:							
Ni	Fe	Cr	Мо	Sn	Zn		

14 ECKART

ECKART GmbH Guentersthal 4 91235 Hartenstein, Germany Tel +49 9152 77-0 Fax +49 9152 77-7008 info.eckart@altana.com www.eckart.net

ECKART America Corporation 830 East Erie Street Painesville, Ohio 44077, USA Tel +1 440 954-7600 Fax +1 440 354-6224 Toll-free: 800 556 1111 info.eckart.america.oh@altana.com

ECKART Asia Ltd.
Room 701-3, 7th floor C C Wu Building 302-308 Hennessy Road
Wan Chai, Hong Kong
Tel +852 3102 7200
Fax +852 2882 5366
info.eckart.asia@altana.com
www.eckart.net

1/September2023.1 FA 026996XX0

www.eckart.net

This information and our technical advice – whether verbal, in writing or by way of trials – are given in good faith but without warranty, and this also applies where proprietary rights of third parties are involved. Our advice does not release you from the obligation to verify the information currently provided – especially that contained in our safety data and technical information sheets – and to test our products as to their suitability for the intended processes and uses. The application, use and processing of our products and the products manufactured by you on the basis of our technical advice are beyond our control and, therefore, entirely your own responsibility.

With compliments

A member of **C ALTANA**